A splitting method for fully nonlinear degenerate parabolic PDEs

نویسنده

  • Xiaolu Tan
چکیده

Motivated by applications in Asian option pricing, optimal commodity trading etc., we propose a splitting scheme for fully nonlinear degenerate parabolic PDEs. The splitting scheme generalizes the probabilistic scheme of Fahim, Touzi and Warin [13] to the degenerate case. General convergence as well as rate of convergence are obtained under reasonable conditions. In particular, it can be used for a class of Hamilton-Jacobi-Bellman equations, which characterize the value functions of stochastic control problems or stochastic differential games. We also provide a simulationregression method to make the splitting scheme implementable. Finally, we give some numerical tests in an Asian option pricing problem and an optimal hydropower management problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-Dependent PDEs

We prove a comparison result for viscosity solutions of (possibly degenerate) parabolic fully nonlinear path-dependent PDEs. In contrast with the previous result in Ekren, Touzi & Zhang [10], our conditions are easier to check and allow for the degenerate case, thus including first order path-dependent PDEs. Our argument follows the regularization method as introduced by Jensen, Lions & Sougani...

متن کامل

Multiscale problems and homogenization for second-order Hamilton–Jacobi equations

We prove a general convergence result for singular perturbations with an arbitrary number of scales of fully nonlinear degenerate parabolic PDEs. As a special case we cover the iterated homogenization for such equations with oscillating initial data. Explicit examples, among others, are the two-scale homogenization of quasilinear equations driven by a general hypoelliptic operator and the n-sca...

متن کامل

ar X iv : 0 90 6 . 14 58 v 1 [ m at h . A P ] 8 J un 2 00 9 DIFFERENCE - QUADRATURE SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC INTEGRO - PDE

We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...

متن کامل

Difference-Quadrature Schemes for Nonlinear Degenerate Parabolic Integro-PDE

We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...

متن کامل

Inexact BDDC methods for the cardiac Bidomain model

The cardiac Bidomain model consists in a reaction-diffusion system of PDEs for the intraand extra-cellular cardiac potentials coupled with a nonlinear system of ODEs accounting for the cellular model of ionic currents. Fully implicit methods in time have been considered in a few studies, see e.g. [16] and references therein. As in most of previous work (see [18] for a review), in this study we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013